首页> 外文OA文献 >Robust Smartphone App Identification Via Encrypted Network Traffic Analysis
【2h】

Robust Smartphone App Identification Via Encrypted Network Traffic Analysis

机译:通过加密的网络流量分析进行可靠的智能手机应用识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract:The apps installed on a smartphone can reveal much information about a user, such as their medical conditions, sexual orientation, or religious beliefs. Additionally, the presence or absence of particular apps on a smartphone can inform an adversary who is intent on attacking the device. In this paper, we show that a passive eavesdropper can feasibly identify smartphone apps by fingerprinting the network traffic that they send. Although SSL/TLS hides the payload of packets, sidechannel data such as packet size and direction is still leaked from encrypted connections. We use machine learning techniques to identify smartphone apps from this side-channel data. In addition to merely fingerprinting and identifying smartphone apps, we investigate how app fingerprints change over time, across devices and across different versions of apps. Additionally, we introduce strategies that enable our app classification system to identify and mitigate the effect of ambiguous traffic, i.e., traffic in common among apps such as advertisement traffic. We fully implemented a framework to fingerprint apps and ran a thorough set of experiments to assess its performance. We fingerprinted 110 of the most popular apps in the Google Play Store and were able to identify them six months later with up to 96% accuracy. Additionally, we show that app fingerprints persist to varying extents across devices and app versions.
机译:摘要:安装在智能手机上的应用程序可以揭示有关用户的许多信息,例如他们的医疗状况,性取向或宗教信仰。此外,智能手机上特定应用程序的存在或不存在可以通知攻击者谁打算攻击该设备。在本文中,我们证明了无源窃听者可以通过对智能手机应用发送的网络流量进行指纹识别来切实地识别它们。尽管SSL / TLS隐藏了数据包的有效负载,但仍从加密连接中泄漏了诸如数据包大小和方向之类的边信道数据。我们使用机器学习技术从此辅助渠道数据中识别智能手机应用程序。除了仅对智能手机应用程序进行指纹识别和识别外,我们还研究跨设备和不同版本的应用程序指纹随时间的变化。此外,我们介绍了一些策略,这些策略使我们的应用分类系统能够识别并缓解歧义流量的影响,即广告流量等应用之间的常见流量。我们完全实现了指纹应用程序的框架,并进行了一系列彻底的实验以评估其性能。我们对Google Play商店中的110种最受欢迎​​的应用进行了指纹识别,并在六个月后能够以96%的准确率对其进行识别。此外,我们证明了应用程序指纹在设备和应用程序版本之间的持久程度有所不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号